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The Concept Of Segmentation 
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Intensity:  Bright - dark

Shape:  Squares , spheres, triangles

Texture: homogeneous – speckled 

Connectivity: Isolated - connected

Identify classes (features) that characterize this image!

Topology: Closed - open
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More On The Concept Of 

Segmentation:
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Deterministic versus probabilistic classes

Can you still identify multiple classes in each image?
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Segmentation Of Scenes
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Segment this scene!

Hint: Use color composition and spatial features

By J. Chen and T. Pappas; 2006, SPIE; DOI: 10.1117/2.1200602.0016  



UCSF
VA

Examples: Intensity, Texture, Topology

Medical Imaging Informatics 

2011, N.Schuff

Course # 170.03

Slide 6/67

Department of 

Radiology & Biomedical Imaging

Segmentation of abdominal CT scan

Stephen Cameron. Oxford U, Computing Laboratory

Gray matter 

segmentation

By intensity

By texture

image at: www.ablesw.com/3d-doctor/3dseg.htm

topology

http://web.comlab.ox.ac.uk/people/Stephen.Cameron
http://web.comlab.ox.ac.uk/people/Stephen.Cameron
http://web.comlab.ox.ac.uk/people/Stephen.Cameron
http://www.ablesw.com/3d-doctor/3dseg.htm
http://www.ablesw.com/3d-doctor/3dseg.htm
http://www.ablesw.com/3d-doctor/3dseg.htm
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Definitions

 Segmentation is the partitioning of an image into 

regions that are homogeneous with respect to some 

characteristics.

In medical context:

 Segmentation is the delineation of anatomical 

structures and other regions of interest, i.e. lesions, 

tumors.
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Formal Definition

If the domain of an image is , then the segmentation

problem is to determine sets (classes) Zk, whose union

represent the entire domain

Sets are connected:
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More Definitions

 When the constraint of connected regions is removed, 

then determining the sets Zk is termed pixel

classification. 

 Determining the total number of sets K can be a 

challenging problem.

 In medical imaging, the number of sets is often based 

on a-priori knowledge of anatomy, e.g. K=3 (gray, 

white, CSF) for brain imaging. 
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Labeling

 Labeling is the process of assigning a meaningful 

designation to each region or pixel. 

 This process is often performed separately from 

segmentation. 

 Generally, computer-automated labeling is desirable

 Labeling and sets Zk may not necessarily share a one-

to-one correspondence
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Dimensionality

 Dimensionality refers to whether the segmentation 

operates in a 2D or 3D domain. 

 Generally, 2D methods are applied to 2D images and 

3D methods to 3D images. 

 In some instances, 2D methods can be applied 

sequentially to 3D images. 
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Characteristic and Membership 

Functions
 A characteristic function is an indicator whether a pixel at location 

j belongs to a particular class Zk.

 This can be generalized to a membership function, which does 

not have to be binary valued.

 The characteristic function describes a “deterministic” 
segmentation process whereas the membership function 
describes a “probabilistic” one.
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Simple Membership Functions
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Segmentation Has An Important Role
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SEGM

Quantification

Surgical planning

Image registration

Computational diagnostic

Partial volume correction

Super resolution

Atlases

Database storage/retrieval

informatics

Image transmission
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Segmentation Methods
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Threshold Method
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Angiogram showing a right MCA aneurysm 

Dr. Chris Ekong; 

www.medi-fax.com/atlas/brainaneurysms/case15.htm
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Histogram (fictitious)

Threshold

(TA) (TB )

http://www.medi-fax.com/atlas/brainaneurysms/case15.htm
http://www.medi-fax.com/atlas/brainaneurysms/case15.htm
http://www.medi-fax.com/atlas/brainaneurysms/case15.htm
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Threshold Method
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Original
Threshold min/max Threshold standard deviation



UCSF
VA

Threshold Method Applied To 

Brain MRI
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White matter segmentation

•Major failures:

•Anatomically non-specific

•Insensitive to global signal 

inhomogeneity
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Threshold: Principle Limitations

 Works only for segmentation based on intensities

 Robust only for images with global uniformity and 

high contrast to noise

 Local variability causes distortions 

 Intrinsic assumption is made that the probability of 

features is uniformly distributed
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Region Growing - Edge Detection

 Region growing groups pixels 
or subregions into larger 
regions. 

 A simple procedure is pixel 
aggregation, 

 It starts with a “seed” point 
and progresses to neighboring 
pixels that have similar 
properties.

 Region growing is better than 
edge detection in noisy 
images.
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Seed point

Guided e.g. by energy potentials:

,

, , . . .
i j

i j

I I
V i j equivalent to a z scoreSimilarity:

Edges: , ( )l r rV l r I I erf x I
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Region Growing – Watershed 

Technique
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CT of different types of 

bone tissue (femur area) 

M. Straka,  et al. Proceedings of MIT 2003 

(a) WS over-segmentation 

(b) WS conditioned by regional density mean values

(c) WS conditioned by hierarchical ordering of regional density mean 

values
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Region Growing: Principle 

Limitations
 Segmentation results dependent on seed selection

 Local variability dominates the growth process

 Global features are ignored 

 Generalization needed:

 Unsupervised segmentation (i.e.insensitive to selection of seeds)

 Exploitation of both local and global variability
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Clustering
 Generalization using clustering 

 Two commonly used clustering algorithms

○ K-mean

○ Fuzzy C-mean
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Definitions: Clustering
 Clustering is a process for classifying patterns in such a way that 

the samples within a class Zk are more similar to one another than 
samples belonging to the other classes Zm, m ≠k; m = 1…K. 

 The k-means algorithm attempts to cluster n patterns based on 

attributes (e.g. intensity) into k classes k < n.

 The objective is to minimize total intra-cluster variance in the least-
square sense:

 for k clusters Zk, k= 1, 2, ..., K. µi is the mean point (centroid) of all 

pattern values j ∈ Zk.
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Fuzzy Clustering
 The fuzzy C-means algorithm is a generalization of K-

means.

 Rather than assigning a pattern to only one class, the 

fuzzy C-means assigns the pattern a number m, 0 <= m 

<= 1, described as membership function.
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K- means

Medical Imaging Informatics 

2011, N.Schuff

Course # 170.03

Slide 26/67

Department of 

Radiology & Biomedical Imaging

-10 0 10 20 30 40 50

d1

-50

-10

30

70

d
2

Three classes



UCSF
VA

K - means
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K - means
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K - means
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K - means
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K – means:  TRAPPED!
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Fuzzy C - means

Component 1

C
o
m

p
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e
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t 
2

-40 -20 0 20 40 60

-2
0

0
2
0

4
0

These two components explain 100 % of the point variability.
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Fuzzy C- Means Segmentation I
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Two classes

Original Class I Class 2
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Fuzzy Segmentation II
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Original

Class I Class 2

Class 3 Class 4
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Brain Segmentation With Fuzzy C-

Means
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4T MRI, bias field inhomogeneity contributes to the problem of poor segmentation
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Clustering: Principle Limitations

 Convergence to the optimal configuration is not 
guaranteed. 

 Outcome depends on the number of clusters chosen. 

 No easy control over balancing global and local 
variability

 Intrinsic assumption of a uniform feature probability is 
still being made

 Generalization needed:
 Relax requirement to predetermine number of classes

 Balance influence of global and local variability

 Possibility to including a-priori information, such as non-uniform 
distribution of features.
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Segmentation As Probabilistic 

Problem

 Treat both intensities Y and classes Z as random 
distributions

 The segmentation problems is to find the classes that 
maximize the likelihood to represent the image

 Segmentation in Bayesian formulation becomes :

 where 
 Z is the segmented image (classes z1 ….zK) 
 Y is the observed image (values y1 ….yn)
 p(Z) is the prior probability 
 p(Y|Z) is the likelihood
 P(Z|Y) is the segmentation that best represents the observation
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Bayesian Concept

Medical Imaging Informatics 2011, 

Nschuff

Course # 170.03

Slide 38/31

Department of 

Radiology & Biomedical Imaging

Prior

Likelihood

Posterior
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Treat Segmentation As Energy 

Minimization Problem

 Since p(B) = observation is stable, it follows:

 The goal is to find the most probably distribution of p(Z|Y) given the 
observation p(Y)

 Since the log probabilities are all additive, they are equivalent to 
distribution of energy

 segmentation becomes an energy minimization problem. 

ln ( | ) ln ( | ) ln ( )p Z Y p Y Z p Z
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Probability In Spatial Context

 Use the concept of Markov Random Fields (MRF) for 
segmentation

 Definition:

 Classes Z are a MRF 

○ Classes exist: p(z) > 0 for all z  Z

○ Probability of z at a location depends only on 
neighbors

○ Observed intensities are a random process 
following a distribution of many degrees of freedom. 
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MRF Based Segmentation
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1st and 2nd order MRFs

(p,q)
(p,q+1)

(p=1,q+1)(p+1,q)

Ising model of spin glasses 
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MRF Based Segmentation

 Step I: Define prior class distribution 

energy:
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1st and 2nd order MRFs
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MRF Based Segmentation

 Step I: Define prior class distribution 
energy:

 Step II: Select distribution of conditional 
observation probability, e.g gaussian:

 Yp,q is the pixel value at location (p,q)

 z and z are the mean value and variance 
of the class z
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MRF Based Segmentation
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Step III: Solve (iteratively) for the minimal 

distribution energy
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How To Obtain A Prior Of Class 

Distributions?
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Average Gray Matter Map 

Of 40 Subjects

Register to

Individual MRI

Segment
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The Process of MRF Based 

Segmentation
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MRF Based Segmentations
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4T MRI,  SPM2, priors for GM, WM based on 60 subjects
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Generalization:

Mixed Gaussian Distributions
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Find solution iteratively using 

Expectation Maximization (EM)
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Expectation Maximization Of 

MRF Based Segmentation

p
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t
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intensity

Global Distribution
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EMS
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1.5 MRI,  SPM2,  tissue classes: GM, WM, CSF, WM Lesions

Standard
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MRF Based Segmentation Using

Various Methods 
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A: Raw MRI

B: SPM2

C: EMS

D: HBSA

from

Habib Zaidi, et al, 

NeuroImage 32 

(2006) 1591 – 1607
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Principle Limitations Of MRF

Case where a simple energy

minimization might not work:

 green: wrong segmentation

 red: correct segmentation

The segmentation energy of green might be 

smaller than that of red based on simple                

separation energy
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A Case As Motivation

 EMS 

 areas where EMS have problems. 
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EMS gray matter segmentation
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How Geo-cuts Works 

 The separation penalty is defined based on magnitude and 

direction of image gradient:

 Small gradient magnitude:

○ separation penalty: large (all directions)

 Large gradient magnitude

○ separation penalty :

 small in direction of gradient.

 very large in other directions.
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Why Use Geo Cuts 

Case where simple separation energy

did not work:
 green: wrong segmentation

 red: correct segmentation

Using Geo-cuts leads to 
 Higher separation energy for green than 

for red.

  Correct segmentation
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EMS vs. Geo Cuts
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EMS gray matter Geo-Cuts gray matter Geo-Cuts white matter
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Deformable Models

 So far segmentation methods have not exploited 

knowledge of shape.

 In shape based methods, the segmentation problem 

is again formulated as an energy-minimization 

problem. However, a curve evolves in the image until 

it reaches the lowest energy state instead of a MRF.

 External and internal forces deform the shape control 

the evolution of segmentation.
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Deformable Template Segmentation
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A. Lundervold et al. 

Model-guided Segmentation of Corpus Callosum in MR Images 

www.uib.no/.../arvid/cvpr99/cvpr99_7pp.html

http://www.uib.no/med/avd/miapr/arvid/cvpr99/cvpr99_7pp.html
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3D Deformable Surfaces
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Costa, J. École Nationale Supérieure des Mines de Paris

www.jimenacosta.com/Jime.Publications.MICCAI0

Automated Delineation of Prostate Bladder and Rectum

http://www.jimenacosta.com/Jime.Publications.MICCAI07.php
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3D Deformable Surfaces
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Tamy Boubekeur, Wolfgang Heidrich, Xavier Granier, Christophe Schlick

Computer Graphics Forum (Proceedings of EUROGRAPHICS 2006), 

Volume 25, Number 3, page 399--406 - 2006

http://user.cs.tu-berlin.de/~boubek
http://user.cs.tu-berlin.de/~boubek
http://user.cs.tu-berlin.de/~boubek
http://www.cs.ubc.ca/~heidrich/
http://www.cs.ubc.ca/~heidrich/
http://www.labri.fr/~granier
http://www.labri.fr/~granier
http://www.labri.fr/~schlick
http://www.labri.fr/~schlick
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Segmentation Via Texture 

Extraction

 Two classical methods for feature 

extraction

 Co-occurrence matrix (CM)

 Fractal dimensions (FD)
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Co-Occurrance Matrix (CM)
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Definition: The CM is a tabulation of how often different combinations 

of pixel brightness values (gray levels) occur in an image. 
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CM MRI with spatially varying intensity bias

MRI with spatially homogenous intensity bias
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Fractal Dimensions
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Intuitive Idea: 

Many natural objects have structures that are repeated regardless of 

scale. Repetitive structures can be quantified by fractal dimensions 

(FD).
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Definition: 

Sierpinski Triangle

Box counting
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Fractal Dimensions
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MEDICAL IMAGE SEGMENTATION USING 

MULTIFRACTAL ANALYSIS  

Soundararajan Ezekiel; 

www.cosc.iup.edu/sezekiel/Publications/Medical

http://www.cosc.iup.edu/sezekiel/Publications/Medical
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Literature
1. Segmentation Methods I and II; in Handbook of Biomedical 

Imaging; Ed. J. S. Suri; Kluwer Academic 2005.

2. WIKI-Books: http://en.wikibooks.org/wiki/SPM-VBM

3. FSL- FAST:http://www.fmrib.ox.ac.uk/fsl/fast4/index.html
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